Rozwiązanie układu równań metodą graficzną: • doprowadzamy każde równanie do wzoru funkcji liniowej, czyli y = ax + b. • rysujemy proste w układzie współrzędnych. - wyznaczamy dwa punkty należące do prostych. - rysujemy proste przechodzące przez wyznaczone punkty. • odczytujemy rozwiązanie z wykresu: - jeżeli proste
Zadanie blockedSprawdz, czy równanie ma nieskończenie wiele rozwiązań, czy nie ma rozwiązań. Równania niemające rozwiązań podkreśl Sprawdz, czy równanie ma nieskończenie wiele rozwiązań, czy nie ma rozwiązań. Równania niemające rozwiązań podkreśl a)3x-1=2x+(x-4) b)-x+2+(x+5)=4x-4(x+3) c)7-5(x+2)+3(x+3)=-2x+6 d)5(2x-3)-7x+15=3(x-8)+24 e)4x-22=14-(3x+2)-7(5-x) szkolnaZadaniaMatematyka Odpowiedzi (1) maalinkowa a)3x-1=2x+(x-4)3x-1=2x+x-40=-3b)-x+2+(x+5)=4x-4(x+3) -x+2+x+5=4x-4x-120=19c)7-5(x+2)+3(x+3)=-2x+6 7-5x-10+3x+9=-2x+60=0d)5(2x-3)-7x+15=3(x-8)+24 10x-15-7x+15=3x-24+240=0e)4x-22=14-(3x+2)-7(5-x)4x-22=14-3x-2-35+7x0=-1;) :) :) o 19:44 Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Które równanie należy dopisać do równania-\frac{1}{3}x+9y=-6 , aby otrzymać układ równań który nie ma rozwią… GhosT96 GhosT96
Układ oznaczony, nieoznaczony, sprzeczny jest dość łatwy do rozpoznania na podstawie obliczeń. Układ równań jest oznaczony, gdy podczas obliczeń otrzymasz jedno rozwiązanie np.: \(\left\{ \begin{matrix} x=3 \\ y=2 \\ \end{matrix} \right.\) Układ równań jest nieoznaczony (tożsamościowy), gdy podczas obliczeń otrzymasz tożsamość np.: 0=0, 1=1, 3=3 itp. Z lewej strony i prawej strony równania otrzymujesz identyczne liczby najczęściej 0=0. Taki układ ma nieskończenie wiele rozwiązań. Układ równań jest sprzeczny, gdy podczas obliczeń otrzymujesz sprzeczność – „fałsz matematyczny” np.: 0≠3, 4≠0, 5≠6 itp. Występuje tu brak rozwiązań. Interpretacja graficzna układu równań Interpretacją układu równań w układzie współrzędnych jest para prostych. Układ równań posiada dwa równania. Każde z nich można narysować w układzie współrzędnych jako prostą. W pierwszej kolumnie jest układ oznaczony. Podczas obliczeń otrzymujemy parę liczb: \(\left\{ {\begin{array}{*{20}{c}} {x = 1}\\ {y = 2} \end{array}} \right.\). Liczby x=1 i y=2 są jednocześnie współrzędnymi punktu przecięcia dwóch prostych, których równania są określone przez układ równań. Zatem punkt przecięcia się prostych jest rozwiązaniem graficznym układu równań. W drugiej kolumnie jest układ nieoznaczony. Gdybyś wykonał rachunki wyjdzie nam tożsamość: 0=0. Pozornie równania w tym układzie wyglądają inaczej, ale tak na prawdę można doprowadzić oba równania do tej samej postaci. A skoro równania opisujące proste są identyczne zatem interpretacją układu nieoznaczonego są dwie proste leżące jedna na drugiej (będące tą samą prostą). W takim przypadku mamy nieskończenie wiele punktów wspólnych między tymi dwiema prostymi. Stąd układ nieoznaczony ma nieskończenie wiele rozwiązań. W trzeciej kolumnie jest układ sprzeczny. Podczas obliczeń otrzymałbyś sprzeczność 0≠-5. W układzie współrzędnych taki układ równań prezentuje się w postaci dwóch prostych równoległych, które nie mają wspólnych punktów. Stąd układ sprzeczny nie ma rozwiązań. Zadanie. Rozwiąż układy równań i odpowiedz, który z nich jest oznaczony, nieoznaczony lub sprzeczny. Zobacz na stronie Zobacz na YouTube Równania w układach równań mogą być zapisane między innymi w: 1. Postaci ogólnej prostej Ax+By+C=0 2. Postaci kierunkowej y=ax+b Układ oznaczony, nieoznaczony lub sprzeczny dla dwóch równań zapisanych w postaci ogólnej Układ dwóch równań zapisanych w postaci ogólnej: \[\left\{ \begin{matrix} {{A}_{1}}x+{{B}_{1}}y+{{C}_{1}}=0 \\ {{A}_{2}}x+{{B}_{2}}y+{{C}_{2}}=0 \\ \end{matrix} \right.\] jest oznaczony, jeśli \(\frac{{{A_1}}}{{{A_2}}} \ne \frac{{{B_1}}}{{{B_2}}}\) jest nieoznaczony, jeśli \(\frac{{{A_1}}}{{{A_2}}} = \frac{{{B_1}}}{{{B_2}}} = \frac{{{C_1}}}{{{C_2}}}.\) W praktyce jedno z równań można doprowadzić do postaci drugiego równania tak, że \({A_1} = {A_2};\;{B_1} = {B_2};\;{C_1} = {C_2}\) jest sprzeczny, jeśli \(\frac{{{A_1}}}{{{A_2}}} = \frac{{{B_1}}}{{{B_2}}} \ne \frac{{{C_1}}}{{{C_2}}}.\) W zadaniach matematycznych można jedno z równań sprowadzić do postaci drugiego tak, że będą się różnić się tylko liczbami, wyrazami wolnymi bez literek. Więc warunek można uprościć do \({A_1} = {A_2};\;{B_1} = {B_2};\;{C_1} \ne {C_2}\) Układ oznaczony, nieoznaczony lub sprzeczny dla dwóch równań zapisanych w postaci kierunkowej prostej: Układ dwóch równań zapisanych w postaci kierunkowej: \[\left\{ {\begin{array}{*{20}{l}} {y = {a_1}x + {b_1}}\\ {y = {a_2}x + {b_2}} \end{array}} \right.\] jest oznaczony, jeśli \({a_1} \ne {a_2}\), współczynniki \({b_1},{b_2}\) są dowolne. jest nieoznaczony, jeśli \({a_1} = {a_2};\;{b_1} = {b_2}.\) W tego typu układach dwa równania są identyczne. Jeśli nie wyglądają tak samo to można przekształcić jedno z nich do postaci drugiego równania, aby otrzymać w końcu identyczne równania. jest sprzeczny, jeśli \({a_1} = {a_2};\;{b_1} \ne {b_2}\). Układy sprzeczne posiadające równania w postaci kierunkowej różnią się tylko współczynnikiem „b”, a pozostała część równań jest identyczna. Porównanie układu oznaczonego, nieoznaczonego i sprzecznego Zadanie. Poniższe zdania odnoszą się do następującego układu \(\left\{ \begin{matrix} 6x-15y=15 \\ 2x-5y=5 \\ \end{matrix} \right.\). Wskaż zdanie prawdziwe. A. Rozwiązaniem układu równań jest dokładnie jedna para liczb. B. Zamieszczony układ równań ma nieskończenie wiele rozwiązań. C. Każda para liczb rzeczywistych jest rozwiązaniem układu. D. Zamieszczony obok układ równań nie ma rozwiązań. Zobacz na stronie Zobacz na YouTube Zadanie. Odpowiedz, czy dany układ jest oznaczony, nieoznaczony (tożsamościowy) lub sprzeczny. \[\left\{ {\begin{array}{*{20}{c}} {8x – 6y = 5\quad }\\ { – 4x + 3y = – 2,5} \end{array}} \right.\] \[\left\{ {\begin{array}{*{20}{c}} {4x – \frac{1}{2}y = 3}\\ {8x – y = 8\,\;} \end{array}} \right.\] Zobacz na stronie Zobacz na YouTube Układ sprzeczny – brak rozwiązań Zadanie. Rozwiąż układ równań. Określ, czy jest to układ oznaczony, nieoznaczony, czy sprzeczny. \[\left\{ {\begin{array}{*{20}{c}} {2x – 3y = 5}\\ {2x – 3y = 6} \end{array}} \right.\] \[\left\{ {\begin{array}{*{20}{c}} {2x – 3y = 5}\\ {4x – 6y = 20} \end{array}} \right.\] Treść dostępna po opłaceniu abonamentu Ucz się matematyki już od 25 zł. Instrukcja premium Uzyskaj dostęp do całej strony Wesprzyj rozwój filmów matematycznych Zaloguj się lub Wykup Sprawdź Wykup Anuluj Pełny dostęp do zawartości na 15 dni za dostęp do zawartości na 30 dni za dostęp do zawartości na 45 dni za zł. Anuluj Układ nieoznaczony – wiele rozwiązań Zadanie. Rozwiąż układ równań. Określ, czy jest to układ oznaczony, nieoznaczony, czy sprzeczny. \[\left\{ {\begin{array}{*{20}{c}} {5x + 4y = 2}\\ {5x + 4y = 2} \end{array}} \right.\] \[\left\{ {\begin{array}{*{20}{c}} {5x + 4y = 2}\\ {15x + 12y = 6} \end{array}} \right.\] Treść dostępna po opłaceniu abonamentu. Zadanie. Podaj jakie liczby należy wstawić za literkę „a” i „b”, aby układy były oznaczone, nieoznaczone i sprzeczne. \[\left\{ {\begin{array}{*{20}{c}} {3x – 4y = 5}\\ {ax – 4y = b} \end{array}} \right.\] Treść dostępna po opłaceniu abonamentu. Zadanie. Nie wykonując obliczeń określ, który układ jest oznaczony, nieoznaczony lub sprzeczny. \[\left\{ {\begin{array}{*{20}{c}} {0,5x + 0,3y = 3}\\ {x + 0,6y = 4,3} \end{array}} \right.\] \[\left\{ \begin{matrix} x+3y=10 \\ 2x+6y=20 \\ \end{matrix} \right.\] \[\left\{ {\begin{array}{*{20}{c}} {2x + 2y = 4}\\ {x – 2y = 5} \end{array}} \right.\] Treść dostępna po opłaceniu abonamentu. Bądź na bieżąco z
rozwiązanie. Układ równań {2x-3y=5; -4x+6y=-10; A. nie ma rozwiązań. B. ma dokładnie jedno rozwiązanie. C. ma dokładnie dwa rozwiązania. D. ma nieskończenie wiele rozwiązań. Układ równań oznaczony, sprzeczny i nieoznaczony . Najlepsza odpowiedź Istnieją dwa sposoby sprawdzenia, czy macierz (a tym samym układ równań, który reprezentuje macierz) ) ma unikalne rozwiązanie, czy nie. a. Metoda Cramera. Przekształć układ równań w postać macierzową AX = B, gdzie A = macierz współczynników, X = macierz zmiennych i B = macierz wyników. Nazwij macierz współczynników jako D. W przypadku macierzy 3 x 3, zastąp pierwszą, drugą i trzecią kolumnę macierzy D wynikami Macierz kolumn, aby uzyskać macierze Dx, Dy i Dz. Jeśli D nie jest równe 0 i jeśli przynajmniej jedno z Dx, Dy i Dz nie jest równe 0, to układ równań jest spójny i ma unikalne rozwiązanie. Jeśli D = 0 i jeśli Dx, Dy i Dz = 0, ale co najmniej jeden ze składników macierzy współczynnika (aij) lub co najmniej jeden z nieletnich 2 x 2 nie jest równy 0, to układ równań jest spójny i ma nieskończenie wiele rozwiązań. Jeśli D = 0 i przynajmniej jedno z Dx, Dy i Dz nie jest zerem, to układ równań jest niespójny (brak rozwiązania). Zatem układ równań daje Unikalne rozwiązanie tylko wtedy, gdy wartość wyznacznika nie jest równe zero. b. Metoda rangowa Zapisz układ równań w formacie macierzy AX = B gdzie A = macierz współczynników, X = macierz zmiennych i B = macierz wyników. Znajdź rangę macierzy A. Zapisz macierz rozszerzoną [A, B] Ustal rangę macierzy rozszerzonej [A, B] 1. Jeśli rząd macierzy A nie jest równy rangi macierzy rozszerzonej, to układ równań jest niespójny i nie ma rozwiązania. Jeśli rząd obu macierzy jest równy i równy liczbie nieznane zmienne w systemie i jeśli macierz A nie jest pojedyncza, to układ równań jest spójny i ma unikalne rozwiązanie. Jeśli ranga obu macierzy jest równa, ale ranga jest mniejsza niż liczba niewiadomych, to układ równań jest spójny i ma nieskończenie wiele rozwiązań. Są więc tylko trzy możliwości – niespójne i brak rozwiązania, zgodne z wyjątkowym rozwiązaniem, zgodne z nieskończenie wieloma rozwiązaniami. Więc wydajność systemu Unikalne rozwiązanie tylko wtedy, gdy ranga macierzy współczynników = ranga macierzy rozszerzonej = liczba niewiadomych. Odpowiedź Teoria mówi, że Ax = b ma unikalne rozwiązanie, jeśli \ det (A) \ neq0, w przeciwnym razie nie ma rozwiązania lub jest nieskończenie wiele. W tym przypadku macierz nazywa się pojedyncza Jednak praktyka mówi, że prawie nigdy się to nie zdarza. Więc każdy zestaw równań można rozwiązać? Tak i nie. Jeśli macierz jest prawie pojedyncza, możesz otrzymać rozwiązanie, ale nie będzie ono znaczące. Powodem jest to, że małe fluktuacje po prawej stronie mogą powodować ogromne fluktuacje (o kilka rzędów wielkości) w rozwiązaniu. W tym przypadku system nazywa się źle uwarunkowany . To niedobra rzecz, ponieważ w trakcie obliczeń możesz stracić znaczące cyfry z powodu odejmowania prawie równych ilości. Po czym możesz to stwierdzić? Numer warunku \ kappa (A) = \ | A ^ {- 1} \ | \ | A \ | jest miarą teoretyczną. Najlepsza wartość to 1, im większa, tym gorsza. Ale nie jest to takie łatwe do obliczenia. Praktycznym sposobem na zrobienie tego jest wybranie niewielkiego, losowego zaburzenia po prawej stronie i porównanie dwóch rozwiązań. Jeśli różnią się one znacznie, oznacza to, że masz źle uwarunkowany system. Liczba rozwiązań układów równań liniowych. Najczęściej spotykanym przypadkiem jest dokładnie jedno rozwiązanie układu równań liniowych. Może się jednak zdarzyć, że układ równań liniowych ma nieskończenie wiele rozwiązań lub nie ma ich wcale. Z tego też względu układy równań liniowych dodatkowo ponazywano, by nieskończenie wiele rozwiązań układu równań Karla: układ równań { 4x+2y=10 6x+ay= 15 ma nieskończenie wiele rozwiązań, jeśli A. a=−1 B. a=0 C. a=2 D. a=3 bardzo prosze o pomoc, bo trochę tego nie rozumiem byłoby miło gdyby któś podał mi też kiedy układ ma tylko jedno ropzwiązanie a kiedy wcale 19 gru 18:49 ser: a=3 nieskonczenie wiele 19 gru 18:50 Karla: a mógłbyś powiedzieć dlaczego tak? 19 gru 18:51 ogipierogi: podstawiam w miejsce a, trójkę i mam układ ⎧4x+2y=10/razy 3 ⎩6x+3y=15/razy −2 wszystkie wyrazy się redukują i otrzymujesz 0=0 układ nieoznaczony, nieskończenie wiele rozwiązań 19 gru 19:00 19 gru 19:02 Kliknij tutaj, 👆 aby dostać odpowiedź na pytanie ️ Układ równań: 4x+2y=10 6x+ay=15 Ma nieskończenie wiele rozwiązań, jeśli: A. a=-1 B. a=0 C. a=2 D. a=3 anita68345 anita68345 RozwiązanieZatem nasz układ równań nie jest układem Cramera (nie ma jednego rozwiązania) i do jego rozwiązania nie można zastosować wzorów są 2 przypadki, albo układ jest sprzeczny (nie ma rozwiązań), albo ma nieskończenie wiele że, gdy pomnożymy drugie równanie przez -2, to otrzymamy następujący układ równań (równoważny wyjściowemu):\[\left\{\begin{array}{c}2x-6y=4\\2x-6y=-2\end{array}\right.\]Układ ten jest sprzeczny, ponieważ gdy odejmiemy równania stronami, to otrzymamy sprzeczność 0= nasz wyjściowy układ równań też jest sprzeczny (nie posiada rozwiązań). UWAGA Układ nie jest układem Cramera, ponieważ macierz główna układu (ozn. A) jest osobliwa (ma wyznacznik równy 0).
Patryk: Sorry błąd w poleceniu tam powinno być (3m − 1)x + 2y = 2. Mila: Aga! policzysz, czy ja mam liczyć, nie chciałabym dublować pracy. Aga1: Jeśli W≠0, to układ jest oznaczony Jeśli W=W x =W y =0 (wszystkie wyznaczniki są równe 0 to układ nieoznaczony Jeśli W=0i (W x ≠0 lub W y ≠0) to układ sprzeczny.
fever Użytkownik Posty: 13 Rejestracja: 1 kwie 2010, o 22:44 Płeć: Kobieta Lokalizacja: pk równanie ma nieskończenie wiele rozwiązań Równanie \(\displaystyle{ a^{2}x - 7 = 49x + a}\) ma nieskończenie wiele rozwiązań gdy: a = 7 a = -7 a = 0 a = 49 ? Przy moich wymysłach równanie przyjęło postać \(\displaystyle{ a ^{2} - a = 56}\) Nie wiem czy dobrze, ale nawet jesli, to utknęłam:/ rodzyn7773 Użytkownik Posty: 1659 Rejestracja: 12 lip 2009, o 10:44 Płeć: Mężczyzna Lokalizacja: Skierniewice/Rawa Maz. Podziękował: 8 razy Pomógł: 278 razy równanie ma nieskończenie wiele rozwiązań Post autor: rodzyn7773 » 3 kwie 2010, o 20:40 Aby to równanie było tożsamościowe to lewa strona musi być równa prawej. Porównaj odpowiednie współczynniki po lewej i prawej stronie równania. fever Użytkownik Posty: 13 Rejestracja: 1 kwie 2010, o 22:44 Płeć: Kobieta Lokalizacja: pk równanie ma nieskończenie wiele rozwiązań Post autor: fever » 3 kwie 2010, o 20:51 Wg tego co wywnioskowałam a musiało by być równe 8. kombinuje dalej . rodzyn7773 Użytkownik Posty: 1659 Rejestracja: 12 lip 2009, o 10:44 Płeć: Mężczyzna Lokalizacja: Skierniewice/Rawa Maz. Podziękował: 8 razy Pomógł: 278 razy równanie ma nieskończenie wiele rozwiązań Post autor: rodzyn7773 » 3 kwie 2010, o 22:16 Porównuje współczynniki: \(\displaystyle{ \begin{cases} a^2=49 \\ a=-7 \end{cases}}\) Ostateczne rozwiązanie to a=-7. qQSwtwr.
  • 190lb5d8gc.pages.dev/43
  • 190lb5d8gc.pages.dev/263
  • 190lb5d8gc.pages.dev/270
  • 190lb5d8gc.pages.dev/181
  • 190lb5d8gc.pages.dev/229
  • 190lb5d8gc.pages.dev/294
  • 190lb5d8gc.pages.dev/103
  • 190lb5d8gc.pages.dev/215
  • 190lb5d8gc.pages.dev/63
  • układ równań ma nieskończenie wiele rozwiązań jeśli